Poröses Silicium

Erweiterte Suche

Poröses Silicium (abgekürzt pSi) ist eine Form des chemischen Elements Silicium. Die namengebende Besonderheit liegt in der nanoporösen Struktur, das heißt, die Poren haben eine Größe im Bereich von 10−9 bis 10–7 m. Hieraus resultiert ein besonders hohes Oberflächen-Volumen-Verhältnis im Bereich von bis zu 500 m2/cm3. Auf Grund seiner speziellen optischen und elektrischen Eigenschaften ist poröses Silicium für die Herstellung von Solarzellen, sowie von Akkus[1] geeignet[2].

Geschichte

Poröses Silicium wurde 1956 von Arthur Uhlir Jr. und Ingeborg Uhlir entdeckt, die damals in den Bell Laboratories in den USA an einem Verfahren arbeiteten, mit dem die Oberfläche von Silicium und Germanium geformt und poliert werden konnte. Dabei entdeckten sie, dass sich unter geeigneten Bedingungen ein dicker schwarzer, roter oder brauner Film auf der Materialoberfläche bildet. Diese Ergebnisse wurden jedoch nur in einer Labornotiz erwähnt und nicht weiter verfolgt.[3]

Drei Jahrzehnte später vermutete Leigh Canham, der zu diesem Zeitpunkt bei der Defence Research Agency in England beschäftigt war, in porösem Silicium Quantenconfinement-Effekte, welche 1990 experimentell verifiziert werden konnten.[4] Erst dadurch wurde das Interesse der Wissenschaft an den nicht linearen optischen sowie den elektrischen Eigenschaften des Materials geweckt.

Herstellung

Anodisierung

Eine Möglichkeit, poröses Silicium herzustellen, ist die anodische Oxidation. Dabei wird typischerweise Platin als Kathodenmaterial eingesetzt, Silicium als Anode und Wasserstofffluorid (HF) als Elektrolyt. Während das Anlegen eines Gleichstroms zu einer homogeneren Schicht porösen Siliciums führt, ist Wechselstrom geeigneter für die Bildung von Siliciumwafern mit einer Dicke von über 50 µm. Durch die Bildung von Wasserstoffgas können bei diesem Prozess stärkere Inhomogenitäten entstehen. Um diesem entgegenzuwirken, wird dem Elektrolyten Ethanol (mind. 15 %) zugesetzt. Dadurch kann die Homogenität signifikant gesteigert werden.

Ätzen

Außerdem kann poröses Silicium durch das Ätzen mit Fluorwasserstoffsäure (HF), Salpetersäure (HNO3) und Wasser hergestellt werden.[5] Dieses Verfahren ist insbesondere attraktiv auf Grund seiner Einfachheit und der breiten Verfügbarkeit der nötigen Materialien. Auch bei der Herstellung von besonders dünnen pSI-Filmen ist dieses Verfahren sehr nützlich; Schichtdicken von nur 25 Ångström sind auf diese Weise herstellbar.[6]

Trocknen

Bei einfacher Trocknung durch Verdunstung treten aufgrund der Kapillarspannung, welche proportional zur Krümmung der Grenzfläche ist, ab einer bestimmten Schichtdicke Risse auf. Daher sind Verfahren entwickelt worden, die das Risiko beim Trocknen von pSi minimieren sollen.[7] Überkritische Trocknung gilt als effektivste Trockentechnik, da in deren Verlauf die Grenzfläche völlig verschwindet, ist allerdings relativ teuer. Bei der Pentantrocknung wird das Wasser erst durch Pentan ersetzt, das eine geringere Oberflächenspannung hat als Wasser. Beim anschließenden Trocknen treten nur geringe Spannungen auf.

Eigenschaften

Explosivität

2001 hat eine Arbeitsgruppe der TU München zufällig entdeckt, dass mit flüssigem Sauerstoff getränktes hydriertes pSi hochexplosiv ist und seine Sprengkraft jene von TNT übertrifft.[8]. Andere Oxidationsmittel vermeiden die Notwendigkeit sehr tiefer Temperaturen und machen die Handhabung sicherer.

Optische Eigenschaften

Der Brechungsindex sowie die daraus resultierenden optischen Eigenschaften eines Materials hängen unter anderem von der Porosität und dem Medium innerhalb der Poren ab. Der Brechungsindex von porösem Silicium kann damit deutlich von dem anderer Siliciumarten abweichen.[9]

Einzelnachweise

  1. Poröses Silicium in der Akkutechnik. Heise.de. Abgerufen am 3. September 2010.
  2. Poröses Silicium in der Photovoltaikindustrie. Institut für Solarenergieforschung Hameln. Abgerufen am 3. September 2010.
  3. L. T. Canham: A glowing future for silicon. New Scientist, 1993.
  4. Friedemann Völklein, Thomas Zetterer, Praxiswissen Mikrosystemtechnik, Vieweg + Teubner, S. 17
  5. Herstellung durch Ätzen. Forschungszentrum Jülich. Abgerufen am 3. September 2010.
  6. J. L. Coffer: Porous silicon formation by stain etching. Iin Properties of Porous Silicon. Canham, LT, Institution of Engineering and Technology, London 1997, S. 23–28.
  7. Trocknen von porösem Silicium. Forschungszentrum Jülich. Abgerufen am 3. September 2010.
  8. pSi als Sprengstoff. Wissenschaft.de. Abgerufen am 3. September 2010.
  9. Brechungsindex von pSi. Refractive Index Database. Abgerufen am 3. September 2010.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.