Ionenimplanter

Erweiterte Suche

Ionenimplanter sind Maschinen, die Werkstoffe mit geladenen Teilchen (Ionen) beschießen (Ionenimplantation), um die Materialeigenschaften zu ändern.

Aufbau & Funktionsweise

Ionenimplantation-Anlage.

Alle Ionenimplanter bestehen aus einer Ionenquelle, einem Beschleunigungssystem (Ionenbeschleuniger), einer Extraktionsblende, einer Masse- und Energietrennung der Ionen, einem Abtastsystem, sowie einer Kammer zur Bearbeitung der Wafer.

Implantiert wird in Silizium und andere Halbleiter wie z. B. Gallium-Arsenid (GaAs), einem III-V-Verbindungshalbleiter.

In der Ionenquelle wird das Gas ionisiert. Die Ionenquelle besteht dabei aus einem Heizdraht der vom Dotantengas angeströmt wird. Zum Implantieren von Stoffen die als Festkörper vorkommen (z. B. Beryllium) kann in manchen Implantern auch ein sogenannter „Vaporizer“ eingesetzt werden, mit dem feste Dotanten verdampft werden können. Die ionisierten Dotanten werden dann vorbeschleunigt (meist einige 10 kV), bevor der Ionenstrahl den Magnet zur Massen-/Energietrennung erreicht. Nach dem Selektionsmagnet findet eine Nachbeschleunigung mit bis zu einigen Megavolt statt. Der gesamte Prozess findet im Ultrahochvakuum statt, das meist mit Turbomolekularpumpen oder Kryopumpen erzeugt wird.

Als Dotanten dienen Elemente, die als Akzeptoren, wie Bor und Indium, oder Donatoren, wie Phosphor und Arsen, wirken können. Die Beispiele beziehen sich dabei auf Silizium als zu dotierendes Material. Diese Elemente werden oft nicht in ihrer elementaren Form, sondern gebunden in gasförmiger oder fester Form (Pulver) eingesetzt:

  • Bor: Bortrifluorid (BF3, gasförmig)
  • Phosphor: Phosphin (PH3, gasförmig)
  • Arsen: Arsin (AsH3, gasförmig)
  • Indium: Indium(III)chlorid (InCl3, fest)
  • Kohlenstoff
  • Germanium

Einteilung

Bei der Halbleiterherstellung unterscheidet man drei Grundtypen von Implantern:

  • Mittelstromimplanter mit Implantströmen von 10 µA bis 5 mA bei Energien von 5 bis 900 keV
  • Hochstromimplanter mit Implantströmen von 100 µA bis 30 mA bei Energien von 0,5 bis 220 keV
  • Hochenergieimplanter mit Implantströmen von 10 µA bis 1 mA bei Energien von 200 bis 3.000 keV

Weiterhin kann man Implanter nach ihrem Handhabungseinrichtung einteilen:

  • Batch-Maschinen (es werden mehrere Wafer gleichzeitig bearbeitet)
  • Einzel-Wafer-Maschinen (die Wafer werden nacheinander bearbeitet)

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?