Integrin

Erweiterte Suche

Abbildung: Integrine, Brücken zwischen RGD-Proteinen und dem Cytoskelett. Gezeigt ist der GPIIb/IIIa-Komplex der Thrombozytenmenbran. Bindung von Ca++ an eine von-Willebrand-Faktor-artige Domäne verleiht diesem Integrin die Fähigkeit zur Bindung von RGD-Proteinen, wie Fibrinogen und Vitronektin, welche an der Blutgerinnung beteiligt sind

Integrine sind Eiweißmoleküle, die in allen tierischen Zellen mit Ausnahme der roten Blutkörperchen vorkommen. Sie sind dauerhaft in der Zellmembran verankert und durchqueren die Zellmembran. Sie zählen damit zu den Transmembranproteinen.

Integrine verbinden Zellen mit anderen Zellen sowie mit der Extrazellulären Matrix. Weiterhin sind sie für die Signalübermittlung zwischen Zellen und deren Umgebung bedeutsam.[1] Man bezeichnet sie auch als Adhäsionsmoleküle. Mindestens drei weitere Proteine spielen bei der Zell-Zell- und Zell-Matrix-Interaktion bzw. -Kommunikation eine wichtige Rolle – die Cadherine, CAMs (Zelladhäsionsmoleküle) und Selectine.

Die extrazelluläre Proteindomäne dieser Transmembranproteine hat Bindungsstellen mit dem RGD-Erkennungsmerkmal wie Fibronektin bei Fibroblasten, oder „Nicht-RGD-Proteine“ wie interzelluläre Adhäsionsmoleküle (ICAMs), Kollagene und Laminin (bei Epithelzellen).

Integrine sind Glykoproteine. Von Aufbau her sind sie Heterodimere, bestehen also aus zwei miteinander verbundenen Glykoprotein-Ketten. Beim Menschen lassen sich aus den bisher bekannten 18 alpha- und 8 beta-Untereinheiten 24 verschiedene Integrine aufbauen[2]; in anderen Studien wird von 19 alpha- und 8 beta-Untereinheiten ausgegangen, welche 25 Integrin-Heterodimere bilden.[3]

Integrine spielen eine wichtige Rolle bei vielen Prozessen innerhalb des Körpers. Sie können z. B. Viren binden, die gerichtete Wanderung von weißen Blutzellen in Entzündungsherde ermöglichen oder bestimmte Schritte der Blutgerinnung vermitteln.

Die Veränderung der Bindung zwischen Integrinen und an sie bindende Moleküle ist heute zu einem wichtigen Ziel der Entwicklung neuer Arzneistoffe geworden. Anwendungsmöglichkeiten bestehen u. a. bei entzündlichen Erkrankungen oder in der Onkologie. Natalizumab, ein Hemmer der Bindung zwischen dem auf weißen Blutzellen vorkommenden Integrin α4β1 (VLA4 = engl. «very late antigen 4») mit VCAM-1 (engl. «vascular cell adhesion molecule 1») und Fibronektin, wurde bereits als Arzneimittel zur Behandlung der schubförmig verlaufenden multiplen Sklerose zugelassen.[4]

Siehe auch

Quellen

  1. Evans EA, Calderwood DA. Forces and bond dynamics in cell adhesion. Science 2007; 316:1148-53. PMID 17525329
  2. Hynes R. Integrins: bidirectional, allosteric signaling machines Cell 2002; 110:673-87. PMID 12297042
  3. Humphries M.J.: Integrin structure. In: Biochem. Soc. Trans.. 28, Nr. 4, 2000, S. 311–339. doi:10.1042/0300-5127:0280311. PMID 10961914.
  4. Europäischer öffentlicher Beurteilungsbericht: Tysabri der europäischen Arzneimittelagentur, zugegriffen am 28. August 2007.

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?