Homogenität

Erweiterte Suche

Dieser Artikel behandelt Homogenität im naturwissenschaftlichen Zusammenhang; zu mathematischen und anderen Bedeutungen siehe Homogenität (Begriffsklärung).

Homogenität (griech.: homo- von (ὁμοῖος/ὅμοιος) homoios gleich; -gen beschaffen, von (γίγνομαι) gígnomai entstehen; homogenos: von gleich entstandener, also gleicher Beschaffenheit) bezeichnet die Gleichheit einer physikalischen Eigenschaft über die gesamte Ausdehnung eines Systems, bzw. die Gleichartigkeit von Elementen eines Systems. Der Begriff besitzt einen weiten Anwendungsbereich und kann im Einzelnen unterschiedliche Bedeutungen enthalten.

Gegensätze zur Homogenität

Homogen, heterogen, inhomogen

Was nicht homogen ist, wird inhomogen oder aber heterogen genannt.

Zwischen diesen beiden Begriffen ist meist zu unterscheiden, der Wortgebrauch ist etwas schwankend.

  • Ein Körper aus einheitlichem Material, aber mit von Ort zu Ort schwankender Dichte wird beispielsweise als inhomogen bezeichnet.
  • Heterogen ist dagegen ein Körper aus makroskopisch verschiedenartigen Bestandteilen, etwa eine Betonplatte mit Stahlbewehrung.

In der Abbildung sind von links nach rechts die Unterschiede von Homogenität, Heterogenität und Inhomogenität bildlich dargestellt.

Physik

In der Physik ist Materie, atomar betrachtet, grundsätzlich nicht homogen, da die Bausteine der Materie keine gleichmäßige Raumfüllung aufweisen. Schon im Atom selbst ist die Masse- und Ladungsverteilung nicht homogen, da sie sich ungleich auf den Atomkern und die Atomhülle verteilt. Wenn die Atome oder Moleküle jedoch annähernd gleichmäßig (nicht notwendigerweise mit der Regelmäßigkeit eines Kristallgitters, aber ohne makroskopische Schwankungen von Ort zu Ort) verteilt sind, ist die Materie aus praktischer Sicht homogen. Auch Felder sind entweder homogen oder inhomogen.

Abhängigkeit vom Größenmaßstab

Ein Beispiel für Materie, die auf mikroskopischer Ebene heterogen ist, makroskopisch betrachtet dagegen homogen erscheint, ist Milch. Mikroskopisch sind in der Milch Bereiche zu unterscheiden, die Fett enthalten, sowie solche, die Wasser enthalten. Und obwohl beide sich nicht vermischen können, sind beide Bereiche so klein, dass sie makroskopisch betrachtet homogen verteilt erscheinen. Gleichwohl kann es in solchen Gemischen passieren, dass sich ihre Anteile mit der Zeit trennen und im Fall der Milch diese auch makroskopisch nicht mehr homogen erscheint, da ihre wässrigen Bereiche sich klar von ihren fettreichen Bereichen (Sahne) unterscheiden. Um diese Entmischung bzw. Separation zu verhindern, kann man z.B. mit Hilfe des sogen. Homogenisierens für eine auch nach längerer Zeit noch gleichmäßige Verteilung von Fett und Wasser sorgen.

In der Chemie sind homogene Stoffe entweder Reinstoffe oder homogene Gemische, die man auch Lösungen nennt.

Bedeutung homogener Stoffe

Die Gewinnung hinreichend homogener Ausgangsmaterialien und/oder Zwischenprodukte für die Industrie, z.B bei der Herstellung der diversen Halbleiterkomponenten der modernen Elektronik- und Computerindustrie, gehört zu den Schlüsselproblemen der wissenschaftlich-technischen Entwicklung. Sie erfordert (vor allem bei der Gewinnung von Reinststoffen und/oder der Verringerung ihrer Fehlertoleranzen) oft hohen Aufwand.

Folgen der chemischen Homogenität

Homogene Materie hat überall die gleiche Dichte und Zusammensetzung. Wenn in einem großen Behälter mit einem homogenen Stoff, z. B. mit einem Gas, an einer Stelle eine Teilmenge V1 eingeschlossen wird, so enthält diese dieselbe Stoffmenge wie eine Teilmenge mit demselben Volumen V1 an anderer Stelle. Teilt man die gesamte Stoffmenge auf zwei gleich große Volumina auf, so enthalten sie die jeweils gleich große Stoffmenge (in diesem Fall jeweils die Hälfte der ursprünglichen). Daraus folgt:

Die Stoffmenge ist für homogene Substanzen bei gleich bleibendem Druck und gleich bleibender Temperatur proportional zum Volumen, oder umgekehrt:

Das Volumen homogener Substanzen ist bei gleich bleibendem Druck p und gleich bleibender Temperatur T proportional zur Stoffmenge.

Für T = const und p = const gilt also:

$ V\sim n\qquad \qquad {V \over n}={\mbox{const}}\qquad \qquad {V_{1} \over n_{1}}={V_{2} \over n_{2}} $.

Diese Gesetze gelten für alle homogenen Stoffe, solange Temperatur und Druck unverändert bleiben, einschließlich für ideale Gase, für die die Ideale Gasgleichung gilt. Der Quotient $ {\tfrac {V}{n}}=V_{m} $ heißt Molvolumen, der Quotient $ {\tfrac {n}{V}}=c $ ist die Konzentration. Die genannten Beziehungen sind auch die Grundlage der Volumetrie.

Für homogene Substanzen gelten auch die Beziehungen

$ V\sim m\qquad \qquad {m \over V}=\rho $,

siehe Dichte.

Literatur

Brockhaus Enzyklopädie, 19. Auflage, Mannheim 1988

Siehe auch

Wiktionary Wiktionary: homogen – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.