Dopplerfreie Sättigungsspektroskopie

Erweiterte Suche

Die Dopplerfreie Sättigungsspektroskopie, oft auch kurz Sättigungsspektroskopie, ist in der Laserspektroskopie ein hochauflösendes spektroskopisches Verfahren zur Untersuchung atomarer Spektren, bei dem durch geeigneten Versuchsaufbau die Effekte der Dopplerverbreiterung vermieden werden. Das Verfahren ermöglicht, Effekte wie die Hyperfeinstruktur und die natürliche Linienbreite atomarer Spektren zu vermessen.

Experimenteller Aufbau

Prinzipieller Messaufbau

Der prinzipielle Aufbau bei der Sättigungsspektroskopie besteht darin, dass ein durchstimmbarer Laser durch einen Strahlteiler in zwei Teilstrahlen unterschiedlicher Intensität aufgespalten wird. Beide Teilstrahlen werden über Spiegel so umgelenkt, dass sie parallel, aber gegenläufig durch die zu vermessende Probe (z. B. ein Gas) verlaufen. Dabei nennt man den stärkeren Strahl Pump- oder auch Sättigungsstrahl, den schwächeren Test-, Abfrage- oder Probestrahl. Der Probestrahl wird in ein Spektrometer geleitet, an dem abgelesen werden kann, welche Frequenzen in der Probe absorbiert wurden.

Alternativ ist es möglich, ohne Verwendung eines Strahlteilers zwei Laser mit gleicher Frequenz zu benutzen. Dabei muss allerdings zusätzlich sichergestellt werden, dass beide Laser tatsächlich mit derselben Frequenz betrieben werden, was einen größeren Aufwand erfordert.

Die Verwendung zweier gegenläufiger Strahlen stellt den Unterschied zur „normalen“ Spektroskopie dar, bei der nur ein einzelner Strahl durch die Probe direkt in den Detektor gelenkt wird.

Beobachtung und Erklärung

Absorptionsspektren des ersten angeregten Zustands von Rubidium: die mit herkömmlicher Laser­spektroskopie (blau) nicht sichtbare Hyperfeinstruktur wird erst durch die Dopplerfreie Sättigungs­spektroskopie (rot) aufgelöst.

Zur Beschreibung verwendet man die Betrachtung unterschiedlicher Geschwindigkeitsklassen der Teilchen der Probe. Haben sowohl Pump- als auch Abfragestrahl die Frequenz $ f $ und ist $ f_0 $ eine Absorptionsfrequenz der Probe, dann können nur zwei Fälle auftreten:

  • $ f \neq f_0 $: Beide Strahlen werden aufgrund des optischen Dopplereffekts von sich entgegengesetzt bewegenden Teilchen, also unterschiedlichen Geschwindigkeitsklassen, absorbiert. Auf dem Detektor zeigt sich das Dopplerverbreiterte Profil des Abfragestrahls.
  • $ f = f_0 $ (Resonanz): Beide Strahlen werden von den relativ zur Strahlenrichtung ruhenden oder sich senkrecht zum Strahl bewegenden Teilchen, also der gleichen Geschwindigkeitsklasse, absorbiert. Aufgrund der hohen Intensität des Pumpstrahls kommt es zu einer großen Zahl angeregter Zustände, wobei das untere Niveau entvölkert wird. Der Abfragestrahl wird deshalb kaum noch absorbiert und im Absorptionsprofil zeigt sich in der ursprünglich dopplerverbreiterten Kurve ein starker Einschnitt, der sogenannte Lamb-Dip in der Form der natürlichen Linienbreite.

Bildet man im Fall der Resonanz die Differenz der Absorptionsspektren mit und ohne Sättigungsstrahl, erhält man ein Absorptionsprofil ohne Dopplerverbreiterung. Die Breite der Linien ist jetzt nur noch durch deren natürliche Linienbreite gegeben.

Literatur

  •  Wolfgang Demtröder: Laserspektroskopie. 5. Auflage. Springer, Kaiserslautern 2007, ISBN 978-3-540-33792-8.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.