Disintegrin

Erweiterte Suche

Strukturmodell eines Heterodimers von Echistatin

Disintegrine sind Polypeptide, die erstmals aus dem Gift verschiedener Vipern (Viperidae) isoliert wurden. Die Sequenz findet sich aber auch als Disintegrin-Domäne in einer Reihe humaner Enzyme, den ADAM-Metalloproteasen. Bisher sind über 25 verschiedene Disintegrine aus Schlangengift isoliert worden.

Aufbau

Disintegrine sind wasserlösliche cysteinreiche nicht-enzymatische Peptide, die in Schlangengift aus 41 bis 84 Aminosäuren bestehen. In den ADAM-Proteasen besteht die Sequenz der Disintegrin-Domäne meist aus ungefähr 90 Aminosäuren. Fast alle Disintegrine und Disintegrin-Domänen, so beispielsweise auch ADAM15, enthalten die RGD-Sequenz (Arg-Gly-Asp), die beispielsweise an αvβ3-Integrine bindet.[1] Andere Disintegrine der ADAMs können an andere Intgrine binden. ADAM28 bindet an α4β1[2]

Im Schlangengift bewirken die Disintegrine eine verminderte Blutgerinnung durch die Bindung an den Fibrinogen-Bindungsrezeptor − das Integrin αIIbβ3 − der Thrombozyten.[3]

Die RGD-Sequenz, oder wie im Fall von Obtustatin die KTS-Sequenz, wird am Ende einer Schleifenstruktur des Peptids dem jeweiligen Rezeptor präsentiert.[4]

Anwendung

Die hochspezifische Bindung an verschiedene Rezeptoren machen die Disintegrine zu potenziellen Wirkstoffen zur Behandlung einer Reihe von Erkrankungen. Die antikoagulative Wirkung kann beispielsweise zur Vorbeugung vor Thromben genutzt werden.[5] Weltweit werden die Disintegrine für die Therapie von Krebs, Asthma und Osteopenie erprobt.[6]

Speziell die hohe Affinität zu bestimmten Integrinen, die beim Tumorwachstum wichtig für die Neubildung von Blutgefäßen (Angiogenese) sind (beispielsweise αvβ3), ist dabei von Interesse.[7]

Beispiele

Auswahl einiger Schlangen-Disintegrine.

Name nAminosäuren nCystein Spezies
Albolabrin[8] 73 12 Weißlippen-Bambusotter (Trimeresurus albolabris)
Rhodostomin[3] 68 12 Malayische Mokassinotter (Calloselasma rhodostoma)
Trigramin[9] 72 12 Grüne Bambusotter (Trimeresurus gramineus)
Batroxostatin[10] 71 12 Gewöhnliche Lanzenotter (Bothrops atrox)
Elegantin[11][12] 73 12 Trimeresurus elegans
Applagin[8] 71 12 Wassermokassinotter (Agkistrodon piscivorus)
Barbourin[13][14] 73 12 Zwergklapperschlange (Sistrurus m. barbouri)
Bitistatin[4][15] 83 14 Puffotter (Bitis arietans)
Obtustatin[16] 41 8 Levanteotter (Macrovipera lebetina)
Echistatin[16][17] 49 8 Gemeine Sandrasselotter (Echis carinatus)
Eristostatin[16][18] 49 8 MacMahon-Viper (Eristicophis macmahoni)
Halysin[19][20] 71 12 Halysotter (Gloydius halys)
Kistrin[19][21] 68 12 Malayische Mokassinotter (Calloselasma rhodostoma)
Mambin[19][22] 59 8 Jamesons Mamba(Dendroaspis jamesoni)
Tergeminin[14] 73 12 Westliche Massassauga (Sistrurus catenatus tergeminus)
Triflavin[23] 70 12 Habu-Schlange (Trimeresurus flavoviridis)

Einzelnachweise

  1. D. F. Seals und S. A. Courtneidge: The ADAMs family of metalloproteases: multidomain proteins with multiple functions. In: Genes Dev 17, 2003, S. 7–30. PMID 12514095 (Review)
  2. L. C. Bridges u. a.: The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin α4β1. In: J Biol Chem 277, 2002, S. 3784–3792. PMID 11724793
  3. 3,0 3,1 C. P. Chang u. a.: Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. In: Biochem J 357, 2001, S. 57−64. PMID 11415436
  4. 4,0 4,1 L. C. Knight und J. E. Romano: Functional expression of bitistatin, a disintegrin with potential use in molecular imaging of thromboembolic disease. In: Protein Expr Purif 39, 2005, S. 307−319. PMID 15642483
  5. K. Stocker: Anwendung von Schlangengiftproteinen in der Medizin. In: Schweiz Med Wochenschr 129, 1999, S. 205–216.
  6. M. A. McLane u. a.: Disintegrins in health and disease. In: Front Biosci 13, 2008, S. 6617−6637. PMID 18508683 (Review)
  7. S. Swenson u. a.: Anti-angiogenesis and RGD-containing snake venom disintegrins. In: Curr Pharm Des 13, 2007, S. 2860−2871. PMID 17979731 (Review)
  8. 8,0 8,1 J. J. Calvette u. a.: Identification of the disulfide bond pattern in albolabrin, an RGD-containing peptide from the venom of Trimeresurus albolabris: significance for the expression of platelet aggregation inhibitory activity. In: Biochemistry 30, 1991, S. 5225–5229. PMID 2036389
  9. T. F. Huang u. a.: Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. In: J Biol Chem 262, 1987, S. 16157–16163. PMID 3680247
  10. B. Rucinski u. a.: Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. In: Biochim Biophys Acta 1054, 1990, S. 257–262. PMID 2207176
  11. J. Williams u. a.: Elegantin and albolabrin purified peptides from viper venoms: homologies with the RGDS domain of fibrinogen and von Willebrand factor. In: Biochim Biophys Acta 1039, 1990, S. 81–89. PMID 2191722
  12. A. Scaloni u. a.: Amino acid sequence and molecular modelling of glycoprotein IIb-IIIa and fibronectin receptor iso-antagonists from Trimeresurus elegans venom. In: Biochem J 319, 1996, S. 775–782. PMID 8920980
  13. H. Minoux u. a.: Structural analysis of the KGD sequence loop of barbourin, an alphaIIbbeta3-specific disintegrin. In; J Comput Aided Mol Des 14, 2000, S. 317–327. PMID 10815769
  14. 14,0 14,1 R. M. Scarborough u. a.: Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. In: J Biol Chem 266, 1991, S. 9359–9362. PMID 2033037
  15. J. J. Calvetea u. a.: The disulphide bond pattern of bitistatin, a disintegrin isolated from the venom of the viper Bitis arietans. In: FEBS Letters 416, 1997, S. 197–202. PMID 9369214
  16. 16,0 16,1 16,2 C. Marcinkiewicz u. a.: Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. In: Cancer Res 63, 2003, S. 2020–2023. PMID 12727812
  17. Z. R. Gan u. a.: Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. In: J Biol Chem 263, 1988, S. 19827–19832. PMID 3198653
  18. J. Tian u. a.: Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin. In: Toxicon 49, 2007, S. 899–908. PMID 17316731
  19. 19,0 19,1 19,2 L. C. Knight u. a.: Comparison of iodine-123-disintegrins for imaging thrombi and emboli in a canine model. In: J Nucl Med 37, 1996, S. 476–482. PMID 8772651
  20. T. F. Huang u. a.: Halysin, an antiplatelet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. In: Biochem Pharmacol 42, 1991, S. 1209–1219. PMID 1888330
  21. T. Yasuda u. a.: Kistrin, a polypeptide platelet GPIIb/IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. In: Circulation 83, 1991, S. 1038–1047. PMID 1900221
  22. R. S. McDowell u. a.: Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. In: Biochemistry 31, 1992, S. 4766–4772. PMID 1591238
  23. T. F. Huang u. a.: A potent antiplatelet peptide, triflavin, from Trimeresurus flavoviridis snake venom. In: Biochem J 277, 1991, S. 351v357. PMID 1859363

Literatur

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?