CD4-Rezeptor

Erweiterte Suche

CD4-Rezeptor

CD4-Rezeptor

Bänder-/Oberflächenmodell von CD4 (unten, gelb) mit MHC II Molekül nach PDB 1JL4
Vorhandene Strukturdaten: 1cdh, 1cdi, 1cdj, 1cdu, 1cdy, 1g9m, 1g9n, 1gc1, 1jl4, 1q68, 1rzj, 1rzk, 1wio, 1wip, 1wiq, 2b4c, 2nxy, 2nxz, 2ny0, 2ny1, 2ny2, 2ny3, 2ny4, 2ny5, 2ny6, 3cd4
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 433 Aminosäuren
Sekundär- bis Quartärstruktur single pass Typ 1 Membranprotein
Bezeichner
Gen-Namen CD4; CD4mut
Externe IDs OMIM: 186940 UniProtP01730   MGI: 88335
Vorkommen
Homologie-Familie CD4
Übergeordnetes Taxon Höhere Säugetiere

Der CD4-Rezeptor oder einfach nur CD4 (cluster of differentiation 4) ist ein Glykoprotein, das an der Oberfläche von Zellen des Immunsystems (T-Helferzellen, Monocyten und Makrophagen) vorkommt. Tests, die die Anzahl von Zellen bestimmen, die dieses Molekül tragen, geben einen Einblick in den Zustand des Immunsystems. Bei einer Infektion mit HI-Virus verringert sich nach gewisser Zeit die Anzahl CD4-tragender Immunzellen. Beim Infektionsprozess ist das CD4-Molekül eine der Andockstellen für das HI-Virus.

Struktur und Biosynthese

CD4-Rezeptor, schematisch

Der Rezeptor besteht aus vier hintereinander angeordneten Immunglobulindomänen, welche aus der Oberfläche der T-Zelle herausragen, sowie einem kleinen cytoplasmatischen Abschnitt.

CD4 wird nicht nur in T-Zellen, sondern auch in B-Zellen, Makrophagen und Granulozyten exprimiert. Seine Rolle in den Mikroglia-Zellen des Zentralnervensystems im normalen Zustand ist unklar.[1]

Das CD4-Gen erstreckt sich über 31.320 Basenpaare und besteht aus 10 Exons. Die mRNA hat eine Länge von 3.006 Basen und durch Translation und posttranslationale Modifikation wird daraus ein Enzym mit 433 Aminosäuren produziert.[2]

Funktion

Normale Funktion

Bei CD4 handelt es sich um einen so genannten Corezeptor, der gemeinsam mit dem T-Zell-Rezeptor das MHC-Klasse II Molekül (siehe auch Haupthistokompatibilitätskomplex) mit dem Antigen auf anderen Körperzellen erkennt. Dazu bindet CD4 mit der äußersten Spitze (s. Bild) an einer bestimmten Stelle am MHCII-Molekül, von der TCR-Bindungsstelle entfernt. Bei der nachfolgenden Konzentration von CD3Z-, TCR- und CD4-Molekülen am präsentierten Antigen hält sich CD4 an der Peripherie auf. Der zytoplasmatische Teil von CD4 interagiert mit dem sauren Clusterprotein (ACP33), welches die CD4-Aktivitäten herunterreguliert. Zusammenfassend scheint CD4 die Anfangsphase des MHCII-Erkennungsvorgangs in Gang zu bringen.[1]

CD4 induziert die Ansammlung von Lipid Rafts in der Membran und reguliert möglicherweise die Aktivierung der T-Zellen.[3]

Funktion während Infektion mit HIV

CD4 bindet an die Proteine gp120 und P4HB/PDI von HIV-1 und ist Teil des P4HB/PDI-CD4-CXCR4-gp120-Komplexes, sobald HIV-1 an die Zellmembran gekoppelt ist. CD4 interagiert mit den HIV-Proteinen gp160 und Vpu. Die CD4-Produktion wird durch die HIV-Proteine Nef und gp160 heruntergefahren.[3]

Die Anwesenheit von CD4 ist jedoch für HIV-1 nicht ausreichend, um die T-Zelle zu infizieren: es muss auch ein menschlicher Chemokin-Rezeptor, entweder CCR5 oder CXCR4, anwesend sein. Mikrogliazellen, die CD4 exprimieren, werden während der Infektion mit HIV geschädigt. Der Mechanismus ist unklar.[1]

Labor

CD4 dient in der FACS-Methode als Marker für T-Helferzellen.

Einzelnachweise

  1. 1,0 1,1 1,2 CD4-Rezeptor bei Online Mendelian Inheritance in Man.
  2. ENSEMBL-Eintrag
  3. 3,0 3,1 UniProt-Eintrag

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?