Reaktionsbinden

Erweiterte Suche

Reaktionsbinden ist ein werkstoffspezifisches Verfahren aus dem Bereich der keramischen Werkstoffe bei dem ein Metall mit einem Gas reagiert. Alle diese Reaktionen sind exothermer Natur, wobei Energie freigesetzt wird. Am bekanntesten ist das Reaktionsgebundene Siliciumnitrid (RBSN) bei dem das metallische Silicium mit einer Stickstoffatmosphäre das entsprechende Nitrid bildet (dabei kann reiner Stickstoff oder Ammoniumverbindungen verwendet werden). RBSN ist ein rein synthetischer Werkstoff, der kein natürliches Vorkommen in der Erdkruste aufweist.

Weitere Vertreter dieses Verfahrens sind reaktionsgebundenes Siliciumcarbid (RSiC), reaktionsgebundenes Aluminiumoxid RBAO[1][2], reaktionsgebundener Mullit RBM[3], reaktionsgebundenes Magnesiumoxid (RBMO) usw. Alle diese Reaktionsprodukte sind von besonders hoher chemischen Reinheit.

Charakteristisch für das Reaktionsbinden ist die Volumenzunahme während der thermischen Reaktion, dadurch kann die Sinterschrumpfung teilweise kompensiert werden. Bedingt durch die Exothermie bei der Herstellung können nur kleinformatige Bauteile reaktionsgebunden werden. Bei größeren Abmessungen sind die thermischen Spannungen bei unsachgemäßer Temperaturführung dann zu groß und führen zu Rissbildung im Sinterkörper. Um dies zu vermeiden, sind nur geringe Aufheizgeschwindigkeiten (ca. 0,5 - 1 K/min) möglich, typisch und charakteristisch für das Reaktionsbinden.

Die Anwendungsgebiete reichen von der Technischen Keramik bis zum Einsatz als feuerfester Werkstoff.

Das RBAO-Verfahren

RBAO ist die Abkürzung für Reaction Bonded Aluminum Oxide. (reaktionsgebundenes Aluminiumoxid) [4] Vorläufer dieses Verfahrens war die direkte Schmelzoxidation (DMO - Verfahren: direct melting oxidation). Dabei wird ein poröser Körper mit einer Metallschmelze infiltriert und anschließend oxidiert. Beim RBAO wird das Metall Aluminium und Aluminiumoxid in geeigneten Mühlen auf Korngrößen im 1µm-Bereich zerkleinert. Als Mahlflüssigkeiten werden Alkohole oder Öle verwendet, um eine frühzeitige Oxidation der Metallphase zu vermeiden. Nach der Trocknung des Versatzes werden die Körper idealerweise isostatisch gepresst, oxidiert und bei bis zu 1600 °C gesintert. Die Biegefestigkeit ist aufgrund des feinkörnigen Gefüges etwas höher als bei klassischer Korund-Keramik.

Die Modifikation RBM

Der reaktionsgebundene Mullit (RBM) ist eine weitere Modifikation des RBAO - Verfahrens, dabei werden ebenfalls Aluminium und zusätzlich Silicium, oder Siliciumcarbid, oder Zirkon (Zirkoniumsilikat) und Korund als Rohstoffe verwendet. Beim Einsatz von SiC besteht die Möglichkeit eine "Nullschrumpfungskeramik" zu erzeugen, die Sinterschrumpfung wird durch die Oxidation des SiC und die damit verbundene Volumenzunahme kompensiert. Auf eine vollständige Oxidation des SiC muss geachtet werden (kleine Korngrößen, intensive Aufbereitung, Temperaturführung usw.), sonst verbleibt ein Rest-Anteil an SiC, der sich festigkeitsmindernd auswirken kann.

Einzelnachweise

  1. Holz, D.: "Herstellung und Charakterisierung von reaktionsgebundenen Al2O3-Keramiken (RBAO - Verfahren) am Beispiel des Systems Al2O3 / ZrO2, Dissertation 1994, TUHH. VDI Verlag Düsseldorf (Fortschritt-Berichte VDI: Reihe 5, Grund- und Werkstoffe; 367)
  2. Holz, D.; Röger, M.: "Mechanical Properties of Reaction-Bonded Al2O3 / ZrO2 Composites", Ceram. Eng. Sci. Proc. Vol 15, No. 5 (1994) 651-658
  3. Scheppokat, S.: "Reaktionsgebundener Mullit mit Nullschrumpfung auf Basis des Precursorsystems Al/Al2O3/SiC", Dissertation 1999, TUHH. VDI Verlag Düsseldorf, (Fortschritt-Berichte VDI: Reihe 5, Grund- und Werkstoffe; 552)
  4. Holz, D.: "Herstellung und Charakterisierung von reaktionsgebundenen Al2O3-Keramiken (RBAO - Verfahren) am Beispiel des Systems Al2O3/ZrO2, Dissertation 1994, TUHH. VDI Verlag Düsseldorf (Fortschritt-Berichte VDI: Reihe 5, Grund- und Werkstoffe; 367)

Quellen

  • Klaus Irrgang: Temperaturmesspraxis mit Widerstandsthermometern und Thermoelemente, Vulkan-Verlag, Essen
  • W. Bergmann: Werkstofftechnik, Carl-Hanser-Verlag, München 1987, ISBN 3446141286

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.