Messgeräteabweichung

(Weitergeleitet von Messgerätefehler)

Als Messgeräteabweichung werden Abweichungen der Anzeige (allgemein des Ausgangssignals) eines Messgerätes vom wahren Wert, die allein durch das Messgerät verursacht wird, bezeichnet.

Abgrenzung

Gemäß der Sprachregelung durch DIN 1319 gibt es Messgeräte

  • mit Anzeige,
  • ohne Anzeige, das sind Messumformer und Messumsetzer, die
  • ein pneumatisches Signal (eingeprägter Druck) oder
  • ein elektrisches analoges Signal (z. B. eingeprägter Strom) oder
  • ein elektrisches digitales Signal (z. B. zur Ankopplung an Profibus)
ausgeben. Solche Messgeräte ohne Anzeige werden hier nicht behandelt.

Durch das Zusammenwirken eines Messgerätes mit einem Messobjekt kann eine Messabweichung bzw. ein Messfehler entstehen. Z. B. verbraucht ein Spannungsmesser in der Regel einen kleinen Strom, den er durch seine Eingangsklemmen aufnimmt. Je nach Innenwiderstand der Spannungsquelle und je nach Leitungswiderständen erzeugt die Stromaufnahme einen nicht unbedeutenden Spannungsverlust. Man misst weniger als die (mit einem idealen Spannungsmesser messbare) Leerlaufspannung der Spannungsquelle. Es entsteht eine Rückwirkungsabweichung (Schaltungseinflussfehler), eine systematische Abweichung, die immer negativ ist. Ihre Größe wird nicht nur gekennzeichnet durch ein Messgeräte-Kennzeichen, z. B. durch den Messgeräte-Innenwiderstand, sondern auch durch Kennzeichen des Messobjektes. Wegen dieser Verkopplung werden Abweichungen durch Eigenverbrauch hier nicht behandelt.

Beobachtereinflüsse werden hier ebenfalls nicht behandelt.

Im Weiteren soll es daher um Abweichungen eines Messgerätes mit Anzeige, die ausschließlich Eigenschaften des Gerätes selber sind, gehen.

Bei diesen Geräten sind zu unterscheiden

  • analog arbeitende Messgeräte mit Skalenanzeige,
  • digital arbeitende Messgeräte mit Ziffernanzeige.

Es gibt aber auch

  • analog arbeitende Messgeräte mit Ziffernanzeige,
z. B. Energiezähler (sogenannte Kilowattstunden-Zähler) mit Ziffernrollen; diese haben auf der niederwertigsten Stelle eine kontinuierliche durchlaufende Ziffernrolle, versehen mit einer kleinen Strichskale; sie sind in Blick auf ihre Abweichungen zu behandeln wie Geräte mit Skalenanzeige,
  • digital arbeitende Messgeräte mit Skalenanzeige,
z. B. Bahnhofsuhren, die überwiegend keinen Sekundenzeiger enthalten; diese sind in Blick auf ihre Abweichungen zu behandeln wie Geräte mit Ziffernanzeige (wegen Ankopplung dieser Uhren an die Zeitreferenz reduziert auf die Quantisierungsabweichung; siehe auch Digitale Messtechnik).

Geräteabweichungen anzeigender Messgeräte

Gemeinsames

Trägt man das Ausgangssignal (abgelesener Wert) als Funktion des Eingangssignals (Messgröße) in einem rechtwinkligen, linear geteilten Koordinatensystem auf, so erhält man die Kennlinie, die als linear angestrebt wird (bei Digital-Geräten linear, wenn man nur die linken (oder rechten) Ecken der gestuften Kennlinie verbindet). Bei der Kennlinie sind drei Abweichungen möglich:

Abweichungen vom proportionalen Zusammenhang
a) additiv, b) multiplikativ, c) nicht linear
  1. Verschiebung der Näherungsgeraden: Anfangspunktabweichung (häufig Nullpunktsabweichung),
  2. Verdrehung der Näherungsgeraden: Steigungsabweichung oder Empfindlichkeitsabweichung,
  3. Abweichung von der Näherungsgeraden: Linearitätsabweichung.

Die Messabweichungen werden im Rahmen der Herstellung durch Justierung möglichst klein gemacht; durch Unvollkommenheit der Konstruktion, der Fertigung und der Justierung werden sie aber nicht null.

Im praktischen Einsatz unterliegt ein Messgerät verschiedenen Umwelteinflüssen, die weitere Messabweichungen hervorrufen, z. B. wenn es bei einer anderen Temperatur betrieben wird als bei der Justierung.

Messgeräte mit Skalenanzeige

Für diese Geräte ist in der Regel ein Einsteller für den Nullpunkt frei zugänglich, so dass die Nullpunktsabweichung vermeidbar ist. Für die Messabweichung aus den übrigen Gründen wird eine zusammenfassende Aussage gemacht durch die Angabe eines Klassenzeichens. Dieses beschreibt

  1. den Betrag der maximalen Eigenabweichung, also der Messabweichung bei Betrieb unter denselben Bedingungen wie bei der Justierung, den sogenannten Referenzbedingungen,
  2. den Betrag der maximalen Einflusseffekte, also der zusätzlich auftretenden Messabweichungen, wenn das Gerät nicht unter Referenzbedingungen betrieben wird, aber wenigstens noch in einer zulässigen Nähe zur jeweiligen Referenzbedingung, im Nenngebrauchsbereich.

Auf Beispiele unter dem Stichwort Genauigkeitsklasse wird verwiesen.

Messgeräte mit Ziffernanzeige

Der Nullpunkt ist innerhalb der Breite einer Stufe der Kennlinie nicht justierbar (Nullpunktsabweichung). Bei der Ablesung eines Messwertes kommt eine weitere Messabweichung, die Quantisierungsabweichung - ebenfalls bis zur Breite einer Stufe -, hinzu; beide ergeben zusammen die Fehlergrenze von ± 1 Ziffernschritt (auf der niederwertigsten Stelle) oder ± 1 Digit. Bei manchen Messaufgaben, z. B. bei Wechselstrommessungen, kann diese Fehlergrenze größer sein. Sie gilt im ganzen Messbereich und wird vielfach umgerechnet in Prozent vom Endwert (v.E.) angegeben.

Die nächste Abweichung kommt von der Steigung der angenäherten Kennlinie her. Der Grenzwert dieser Empfindlichkeitsabweichung wird in Prozent vom Messwert (v.M.) bzw. von der Anzeige (v.A.) angegeben. Die dritte oben genannte Abweichung, durch die Nichtlinearität des Analog-Digital-Umsetzers (ADU), liegt häufig so weit unter 1 Ziffernschritt, dass sie keiner Beachtung bedarf. Die Gesamt-Fehlergrenze setzt sich also aus zwei Teilen zusammen, die korrekterweise beide als Summe anzugeben sind.

Klassenzeichen gibt es hier nicht. Angaben zur Fehlergrenze gelten nur bei Bedingungen, die den Referenzbedingungen entsprechen. Diese legt allerdings jeder Hersteller nach eigenem Ermessen fest. Mit deren Angabe sowie der Angabe zur erweiterten Fehlergrenze, die Einflusseffekte einschließt, sind manche Hersteller sehr zurückhaltend.

Beispiel zur Handhabung der Fehlergrenzangaben:

Messbereich (MB) 200 V , aufgelöst in 20 000 Schritte (Digit), so dass 1 Digit $ \hat = $ 0,01 V.
Für den Gleichspannungs-MB wird das Gerät spezifiziert zu $ G_g $ = 0,02 % v.M. + 0,005 % v.E.
Für den Wechselspannungs-MB wird das Gerät spezifiziert zu $ G_w $ = 0,2 % v.M. + 0,015 % v.E.
Im konkreten Fall einer angelegten Spannung von 100 V ergeben sich
$ G_g $ = 0,02 %⋅100 V + 0,005 %⋅200 V = 0,02 V + 0,01 V = 0,03 V $ \hat = $ 3 Digit
$ G_w $ = 0,2 %⋅100 V + 0,015 %⋅200 V = 0,2 V + 0,03 V = 0,23 V $ \hat = $ 23 Digit
Anmerkung: Dieses zweite Ergebnis ist vielleicht überraschend, aber selbst für einen hochwertigen, recht hoch auflösenden Spannungsmesser durchaus realistisch: Bereits die vorletzte Stelle kann hier um eine Zwei abweichen.

Siehe auch

  • Messabweichung
  • Fehlergrenze
  • Digitalmultimeter
  • Grundgenauigkeit

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.