Immunpräzipitation

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Eine Immunpräzipitation (IP, auch Immunopräzipitation genannt) ist eine molekularbiologische Methode, bei der mittels eines Antikörpers ein Antigen aus einer Lösung konzentriert wird. Dieses Antigen kann ein Protein oder ein Peptid sein. In der Regel ist der Antikörper dabei in vitro an ein festes Substrat (Sepharosekügelchen) gekoppelt und bindet über seine Affinität ein spezifisches Antigen in einer Lösung, beispielsweise einem Gewebelysat. Ein bestimmtes Protein wird dabei mitsamt seinen Interaktionspartnern (Copräzipitate) also aus einem Proteingemisch präzipitiert. Dadurch eignet sich die Immunpräzipitation auch zum Nachweis von Protein-Protein-Wechselwirkungen, da ganze Proteinkomplexe mit dieser Methode präzipitiert werden können.

Ein präzipitiertes Protein und seine Interaktionspartner können im Anschluss mit unterschiedlichen Methoden nachgewiesen werden, beispielsweise mit einem Western Blot oder durch vorherige radioaktive Markierung.

Ablauf

Schema einer Immunpräzipitation. Ein Lysat wird zusammen mit einem spezifischen Antikörper inkubiert. Dieser Antikörper bindet an sein Zielprotein und wird über Protein A/G-Beads präzipitiert. Etwaige Interaktionspartner des Zielproteins, die an dieses gebunden sind, werden mit dem Zielprotein kopräzipitiert. Der Interaktionspartner wird im Western Blot nachgewiesen.

Das Proteingemisch kann ein Homogenisat eines Gewebes sein oder aber Zellen aus der Zellkultur. Die Zellkultur ermöglicht es dabei auch, die Partner der vermuteten Interaktion zu überexprimieren, d.h. diese Proteine werden vermehrt gebildet. Der Interaktionspartner sollte in dieser Situation noch an den anderen gebunden sein. Nachdem Zellen oder Gewebe aufgebrochen wurden, gibt man nun Antikörper hinzu, welche an eines der Proteine spezifisch binden. Über diese Antikörper wird dann das gesuchte Protein samt Interaktionspartner herausgezogen. Hierbei bedient man sich in der Regel der spezifischen Eigenschaften von so genanntem Protein A, das aus der Zellwand des Bakteriums Staphylococcus aureus stammt, und/oder Protein G, welches ein Bestandteil der Zellwand von bestimmten Streptokokken-Stämmen ist. Protein A und G binden mit hoher Spezifität an die Fc-Region der meisten Säugetier-Immunglobuline. Mit diesen Proteinen werden nun Kügelchen beschichtet (sogenannte Beads, z.B. aus Sepharose oder magnetischen Mikropartikeln), um in einer solchen Immunpräzipitation die Antikörper-Protein-Komplexe an sich zu binden. Die Isolierung der Komplexe erfolgt nun in der Regel über Zentrifugation sowie mehrere Waschschritte, um unspezifische Proteine zu entfernen. Die Proteine werden von den Beads durch Denaturierung gelöst und der Nachweis erfolgt über einen Western Blot.

Quantitative Immunpräzipitation

Ausgefallene oder lösliche Antigen-Antikörper Immunkomplexe trüben eine Lösung. Verwendet man gereinigte Antigenstandards so kann durch Messung der Trübung (Immunnephelometrie) auf die Antigenkonzentration in der Probe geschlossen werden.[1]

Vor- und Nachteile

Eingesetzt wird die IP in der Molekularbiologie als alternativer Nachweis einer Interaktion, z. B. nach einem Hefe-Zwei-Hybrid-Screen. Sie ermöglicht die Untersuchung von Protein-Protein-Interaktionen in zumindest in vivo-ähnlichen Verhältnissen, d. h. im Milieu einer Zelle und mit in Eukaryoten vorkommenden posttranslationale Modifikationen wie Glykosylierung (Anhängen von Zuckerketten), Palmitoylierung (Anhängen von Fettsäuren) oder Faltung durch Chaperone.

Es ist aber möglich, dass sich Proteine durch das Aufbrechen der Zellen verändern oder auch abgebaut werden. Der Erfolg der IP ist auch zu großem Maße von der Bindung des Antikörpers abhängig. Somit können leicht falsch-negative Ergebnisse produziert werden (false negative), die nur durch wiederholte Versuchsserien mit veränderten Bedingungen behoben werden können. Auf der anderen Seite binden manche Proteine auch direkt an die Beads oder an die Oberfläche der Reaktionsgefäße. Diese können eine nicht vorhandene Interaktion vorgaukeln (false positive), welche nur über zusätzliche Kontrollen behoben werden kann.

Des Weiteren ist es möglich, dass zwei Proteine zwar im IP-Versuch interagieren, aber im Zellzyklus, im Zellorganell oder im Zelltyp nicht gleichzeitig auftreten und deshalb nicht tatsächliche Interaktionspartner sein können.

Aus den genannten Gründen muss die Interpretation von IP-Ergebnissen mit Vorsicht erfolgen. Positive Interaktionen müssen immer mit weiteren Techniken aus der Molekularbiologie verifiziert werden, wie beispielsweise Hefe-Zwei-Hybrid-System oder FRET. Das IP-Experimente gibt weiterhin zwar Auskunft über die mögliche Interaktion von zwei Proteinen, jedoch keine Informationen darüber, wie diese Interaktion stattfindet. Dazu sind detailliertere Untersuchungen der Struktur der beteiligten Proteine nötig.

Einzelnachweise

  1. Christine Schütt, Barbara Bröker: Grundwissen Immunologie, 2. Ausgabe, Springer, 2009, ISBN 9783827420275

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
08.01.2021
Optik - Teilchenphysik
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
08.01.2021
Festkörperphysik - Teilchenphysik
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
07.01.2021
Raumfahrt - Festkörperphysik - Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
07.01.2021
Astrophysik - Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
05.01.2021
Thermodynamik
Weder flüssig noch fest
E
05.01.2021
Quantenoptik
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
22.12.2020
Galaxien - Sterne
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.